Close Menu

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    What's Hot

    LMT Tools India Inaugurates the Nation’s Largest Gear Cutting Tool Manufacturing Facility in Chakan

    February 17, 2026

    200+ Industry Experts, Including Toyota and Honda, to Share Insights at AUTOMOTIVE WORLD 2026 in Tokyo

    February 10, 2026

    Bharat Forge and Germany based Agile Robots sign MoU to advance AI led industrial automation

    February 10, 2026
    Facebook X (Twitter) Instagram
    • About Us
    • Contact US
    • Advertise
    • Subscribe Magazine
    Publications Media Kit
    Facebook Instagram YouTube LinkedIn WhatsApp X (Twitter)
    Machine Tools World | Machine Tools Industry News | CNC Machine Manufacturers | Indian Manufacturing MagazineMachine Tools World | Machine Tools Industry News | CNC Machine Manufacturers | Indian Manufacturing Magazine
    • Top Stories
    • People in Focus
      • Interview
      • Opinion
      • Inside Story
    • Digital Edition
    • Tech Innovations
      • Aerospace / Defense
      • Allied
      • Automation
      • CAD / CAM
      • CNC
      • Cutting Tools
      • DIE / Mould
      • EDM
      • Grinding
      • Metrology
      • Metalworking fluid
    • Case Studies
    • Demo Room
    • Industry
      • Product Updates
      • News Updates
    • Special Zone
      • Cutting Tools Zone
      • Metalworking Fluid Zone
      • Metal Cutting Zone
      • Modern Metrology Zone
      • Smart Automation Zone
    • Blog
    Machine Tools World | Machine Tools Industry News | CNC Machine Manufacturers | Indian Manufacturing MagazineMachine Tools World | Machine Tools Industry News | CNC Machine Manufacturers | Indian Manufacturing Magazine
    Home - Cutting Tools - Super effectiveness is Required for Machining Superalloys
    Cutting Tools

    Super effectiveness is Required for Machining Superalloys

    MTWBy MTWNovember 18, 2021No Comments0 Views
    Facebook Twitter Pinterest LinkedIn WhatsApp Reddit Tumblr Email
    ISCAR: Cutting tool manufacturers
    Fig. 1 – Superalloys are the key materials for turbojet and turboprop engines of modern aircrafts. Jet engine blisk machined with ISCAR’s CUT-GRIP systems.
    Share
    Facebook Twitter LinkedIn Pinterest Email

    Superalloys – metal alloys, which reflect their complex alloyed structure, have become one of the main engineering materials for a long time. They feature extremely high elevated temperature strength, and therefore often are referred to as high-temperature superalloys (HTSA) or heat-resistant superalloys (HRSA). The history of superalloys started with the development of gas-turbine engines that required reliable materials for high operating temperature ranges.  As a result of intensive research and progress in metallurgy, modern superalloys (SA) provide a long service life for working temperatures more than 1000°C.

    Understandably, the largest superalloy consumers today are aero- and marine engine producers (Fig. 1). Superalloys are also very common in the medical industry, which effectively use them for prosthetic implants in orthopedic surgery. In addition, superalloys have become widespread in power generation and the oil and gas industries as crucial materials for essential parts of various devices.

    Exceptional high-temperature strength and corrosion resistance are the undeniable advantages of superalloys. However, there are two sides to the coin: superalloys are not only highly priced, but their machinability is poor, which can pose challenges to manufacturing.  The specific cutting force that characterizes the resistance of the material to chip removal and defines the mechanical load on a cutting tool is high for superalloys. Although the main difficulty is heat, superalloys have poor thermal conductivity. Elemental and loose chips, which are generally generated when machining superalloys, do not provide adequate heat dissipation from the cutting zone. A tendency to work hardening makes the situation worse.

    The manufacturer deals with various SA workpieces: cast, wrought, sintered, etc. The workpiece fabrication methods also have an impact on machinability. For example, abrasiveness of forged workpieces higher that cast ones substantially lower in comparison with sintered workpieces.

    Consequently, a cutting tool is under significant thermal and mechanical load, which dramatically reduces tool life. Therefore, in machining superalloys, the cutting speed directly connected with the heat generation during chip removal is considerably lower when compared to other common engineering materials such as steel or cast iron. The direct result of the cutting speed limitation is poor productivity. Hence, overcoming machining difficulties and increasing productivity are the main challenges for the manufacturer of SA parts.

    According to ISO 513 standard, superalloys together with titanium alloys relate to the ISO S group application. Depending on the prevailing element, superalloys are divided into three types: iron (Fe), nickel (Ni) and cobalt (Co) based alloys. Machinability drops in the specified order; from the iron-based alloys, which can be compared with austenitic stainless steel, to cobalt-based alloys that represent the most hard-to-cut materials in the group.

    Increasing efficiency of machining superalloys has become the focus of various scientific research and technological improvements. Their result was a significant advance in producing SA components. Manufacturing has effectively embraced new machining strategies and innovative methods of cutting coolant supply, such as high-pressure cooling (HPC), minimum quantity lubrication (MQL) and even cryogenic cooling has successfully been introduced. This has taken the productivity of machining superalloys to a new level. However, like in the case of titanium alloys, the key element for improving the productivity of SA machining is a cutting tool that directly removes material layers from a workpiece that produces chips. A cutting tool features the tool material and its geometry, which determines the tool’s triumph or its failure.

    Today, coated cemented carbides are the most common materials for cutting tools for machining superalloys. The development of a carbide grade, in which strength and wear resistance will be mutually complemented is a tricky process that requires an appropriate carbide substrate, coating composition, and coating method. To the amazement of those who believe that the breakthrough possibilities in this direction are almost exhausted, cutting tool producers continue to create new effective carbide grades. Additionally, in machining superalloys, ceramics – another tool material that enables substantially increased cutting speeds – are already in active use.

    If tool materials are connected mostly with material sciences and metallurgy, cutting geometry is more in the tool design field. Ensuring high-performance geometry requires deep engineering knowledge and technology skills. On the one hand, to minimize heat generation and work hardening, a positive rake angle, a large enough clearance angle, and a sharp cutting edge are needed. On the other hand, such a shape weakens the cutting edge that should withstand a considerable mechanical load. Therefore, the correct designed cutting-edge condition becomes a critical success factor. Sintered carbide inserts have the advantage of enabling complex chip forming and chip breaking shapes for insert rake faces. Today, computer modeling of chip formation and pressing processes using finite element methods provide an effective tool to optimize the shapes that are already in the design stage. In solid endmills, a variable pitch design results in improved vibration strength. Cutting edges of these endmills are produced by grinding operations, and to eliminate flaking and edge defects, strict adherence to technological process requirements is highly important.

    Cutting tool manufacturers pay a lot of attention to improving their product portfolios intended for machining superalloys. ISCAR’s news can be excellent indicative examples.

    Carbide grade IC806, which had was introduced over the last few years for face grooving superalloys and austenitic stainless steel, was successfully adopted by ISCAR’s threading and deep drilling lines. This grade has a hard submicron substrate and PVD TiAlN/AlTiN coating with post-coating treatment according to ISCAR’s SUMO TEC technology. IC806 provides notable resistance to flaking and chipping and maintains reliable and repeatable results.

    In machining superalloys by solid carbide endmills and exchangeable heads, grade IC902, which combines ultra-fine grain substrate and nano-layer PVD TiAlN coating, ensures extremely high wear resistance and prolongs tool life. This grade has demonstrated very good results in producing devices for replacement knee and hip joints that are made from difficult-to-cut cobalt-chrome alloys (Fig. 2).

    ISCAR: Cutting tool manufacturers

    ISCAR has significantly extended the range of products for ISO S applications made from various cutting ceramics such as silicon nitride, SiAlON, and whisker-reinforced grades. The newly introduced ceramic items have replenished both indexable inserts & solid endmills (Fig. 3).

    ISCAR: Cutting tool manufacturers
    Fig. 4 –ISCAR’s recently introduced M3M (left) and F3M (right) chipbreakers for ISO standardized turning inserts designed specifically for ISO S and ISO M groups of application.

    The latest rake face designs F3M and F3P for ISO standard turning inserts are intended specifically for hard-to-machine austenitic stainless steel and superalloys (Fig. 4). Their positive rake-angle geometry reduces the cutting force and ensures smooth cutting action, while the set of deflectors on the rake face improves chip control.

    In ceramic double-sided inserts for turning and milling tools, ISCAR has added new chamfered and combined (chamfered and rounded) cutting-edge condition options for tough applications.

    ISCAR has enriched the range of solutions intended for high-pressure cooling by new indexable cutter bodies and tool holders. For example, thermal shrink chucks with polygonal taper shanks, which have coolant jet channels along the central bore, have been replenished by the toolholder product line.

    In conclusion, the need for increased productivity in machining HTSA is a continuous challenge for cutting tool manufacturers, and new effective tool developments are likely to come in the near future.

    For more information, Website: www.iscar.in

    Post Views: 121
    Cutting tool manufacturers ISCAR machining superalloys minimum quantity lubrication
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Telegram Email
    MTW

      Related Posts

      New VGrind infinity linear masters an infinite number of grinding tasks

      February 10, 2026

      HEIDENHAIN measurement technology for accuracy and connectivity driven through artificial intelligence

      February 10, 2026

      GROB’s Innovations in Automation and Machining

      February 10, 2026
      Leave A Reply Cancel Reply

      Top Posts

      Machine Tools World August 2025

      August 25, 20252,462

      3D Printing: India’s Next Manufacturing Frontier

      June 14, 2025134

      Vertical and Horizontal Milling Machines: Key Points of Difference

      August 7, 2021181

      Gravity Die Casting and the Importance of Die Coats

      June 29, 202388
      Don't Miss
      Events

      Intralogistics & Warehousing Expo 2025 Pune – A Massive Success

      By MTWJune 9, 202545

      Pune, India- 3rd edition of Intralogistics & Warehousing Expo, co-located with the Material Handling Expo,…

      Countdown begins for AMTEX – First biggest face-to-face event on machine tools & metal cutting post lockdown

      March 17, 2021

      MMT Expo 2020 showcases world class manufacturing practices in its First Edition

      March 11, 2020

      Intech Additive Solutions

      February 24, 2020
      Stay In Touch
      • Facebook
      • Twitter
      • Pinterest
      • Instagram
      • YouTube
      • Vimeo

      Subscribe to Updates

      Get the latest creative news from SmartMag about art & design.

      About Us
      About Us

      MACHINE TOOLS WORLD magazine is a monthly machine tool industry magazine in India since from last 10 years, catering to Indian & global machine tools, CNC machine manufacturers, Cutting tools, Metal Forming Machine Manufacturers, CAD-CAM, Metrology, Lubricant, Grinding Machine Players.

      Facebook X (Twitter) Instagram YouTube LinkedIn WhatsApp
      Our Picks

      LMT Tools India Inaugurates the Nation’s Largest Gear Cutting Tool Manufacturing Facility in Chakan

      February 17, 2026

      200+ Industry Experts, Including Toyota and Honda, to Share Insights at AUTOMOTIVE WORLD 2026 in Tokyo

      February 10, 2026

      Bharat Forge and Germany based Agile Robots sign MoU to advance AI led industrial automation

      February 10, 2026

      Subscribe to Updates

      Get the latest news, product insights, and expert opinions from the world of machine tools and manufacturing, delivered straight to your inbox.

      © 2026 MachineToolsWorld.
      • Terms & Conditions
      • Privacy Policy
      • Disclaimer Policy

      Type above and press Enter to search. Press Esc to cancel.